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Abstract

The notion of singular reduction operators, i.e., of singular operators of
nonclassical (conditional) symmetry, of partial differential equations in two
independent variables is introduced. All possible reductions of these equations
to first-order ODEs are exhaustively described. As examples, properties
of singular reduction operators of (1 + 1)-dimensional evolution and wave
equations are studied. It is shown how to favourably enhance the derivation
of nonclassical symmetries for this class by an in-depth prior study of the
corresponding singular vector fields.

PACS number: 02.30.Jr
Mathematics Subject Classification: 35A30, 35C05, 35K55, 35K55, 35L70

1. Introduction

Distinctions in kind between Lie symmetries and nonclassical symmetries became apparent
in the first presentation of nonclassical symmetries in [3] by the example of the (1 + 1)-
dimensional linear heat equation and a particular class of operators. In contrast to classical
Lie symmetries (see, e.g., [17]), the system of determining equations on the coefficients of
nonclassical symmetry operators of the heat equation was found to be nonlinear and less
overdetermined, and the set of such operators does not possess the structure of an algebra or
even a vector space.

Another difference appears in the procedure of deriving the determining equations.
Namely, deriving systems of determining equations for nonclassical symmetries crucially
depends on the interplay between the operators and the equations under consideration. Thus,
for the linear heat equation ut = uxx the general form of nonclassical symmetry operators
is Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u, where (τ, ξ) �= (0, 0), and there are two
essentially different cases of nonclassical symmetries: the regular case τ �= 0 and the singular
case τ = 0. The factorization up to nonvanishing functional multipliers gives the two
respective cases for the further investigation: (1) τ = 1 and (2) τ = 0, ξ = 1.
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The problem of determining the nonclassical symmetries of the linear heat equation
was completely solved in [10]. In the regular case τ = 1, after partial integration of the
corresponding determining equations, we obtain ξ = g1(t, x) and η = g2(t, x)u + g3(t, x).
The functions g1, g2 and g3 satisfy a coupled nonlinear system of partial differential equations
[3], which is linearized by a nonlocal transformation to a system of three uncoupled copies
of the initial equation [9, 10, 24]. The underlying reason for this phenomenon lies in the
interaction between the linearity and the evolution structure in the linear heat equation. Hence
similar results can be obtained only for linear evolution equations [7, 18, 21] or related
linearizable equations [13].

The singular case (τ, ξ) = (0, 1) was not considered in [3]. In this case the system of
determining equations for nonclassical symmetries consists of a single (1 + 2)-dimensional
nonlinear evolution equation for the unknown function η and, therefore, is not overdetermined.
The determining equation is reduced by a nonlocal transformation to the initial equation with
an additional implicit independent variable which can be assumed as a parameter [10]. The
linearity of the heat equation is inessential here. Hence after the case of linear evolution
equations [7, 18] this result was extended to general (1 + 1)-dimensional evolution equations
[25], multi-dimensional evolution equations [19] and even systems of such equations [23].
Moreover, it was proved [19], that, e.g., in the (1 + 1)-dimensional case there exists a one-
to-one correspondence between one-parametric families of solutions of an evolution equation
and its reduction operators with (τ, ξ) = (0, 1).

The above results raise a number of interesting questions, to wit: what are possible
causes for the existence of singular cases for reduction operators? Is the conventional
partition of sets of reduction operators with the conditions of vanishing and nonvanishing
coefficients of operators universal or is it appropriate only for certain classes of differential
equations, e.g., evolution equations? Can partitions of sets of reduction operators, different
from the conventional one, be useful? Does there exist an algorithmic way of singling
out singular cases for reduction operators before deriving determining equations? What
properties of a partial differential equation and a subset of its reduction operators lead to
a ‘no-go’ situation (i.e., a single determining equation equivalent, in a certain sense, to
the initial equation)? What is the optimal way of obtaining the determining equation for
nonclassical symmetries? The purpose of the present paper is to answer these and other related
questions.

Algorithms for deriving the determining equations for nonclassical symmetries were
discussed, e.g., in [2, 6] but the focus of these works was quite different.

The conditional invariance of a differential equation with respect to an operator is
equivalent to any ansatz associated with this operator reducing the equation to a differential
equation with one less independent variables [26]. That is why we use the shorter and
more natural term ‘reduction operators’ instead of ‘operators of conditional symmetry’ or
‘operators of nonclassical symmetry’ and say that an operator reduces a differential equation
if the equation is reduced by the corresponding ansatz. The direct method of reduction with
ansatzes of a special form was first explicitly applied in [4] to the Boussinesq equation although
reductions by non-Lie ansatzes were already discussed, e.g., in [8]. A connection between the
reduction by generalized ansatzes and compatibility with respect to higher-order constraints
was found in [15].

To clarify the main ideas of the proposed framework of singular reduction operators, in
this first presentation of the subject we consider only the case of a single partial differential
equation in two independent and one dependent variables and a single reduction operator. We
note, however, that more general cases can be included and will be the subject of forthcoming
papers.
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Some of the main conclusions of the present paper are:

• Singular cases of reduction operators of a partial differential equation are connected with
the possibility of lowering the order of this equation on the manifolds determined by
the corresponding invariant surface conditions in the appropriate jet space. Hence the
first step of the procedure of finding nonclassical symmetries has to consist in studying
singular modules of vector fields which lower the order of the equation. This step is
entirely algorithmic, hence is especially suited to a direct implementation in symmetry-
finding computer algebra programs. The structure of singular modules of vector fields
has to be taken into account under splitting the set of reduction operators for factorization.

• The weak singularity co-order of a reduction operator Q coincides with the essential order
of the corresponding reduced equation and the number of essential parameters in the
family of Q-invariant solutions.

• If a single partial differential equation L in two independent variables admits a first
co-order singular module S of vector fields then it necessarily possesses first co-order
singular reduction operators belonging to S. The system of determining equations for
such operators consists of a single partial differential equation DE in three independent
variables of the same order as L. The equation DE is reduced to L by a nonlocal
transformation.

The paper is organized as follows: the main notions and statements on nonclassical
symmetries are presented in section 2. Singular vector fields of differential functions and
differential equations are defined and studied in sections 3 and 4, respectively. Singular
reduction operators of (1 + 1)-dimensional evolution and nonlinear wave equations are
exhaustively investigated in sections 5 and 6. It is shown that the conventional partition of sets
of reduction operators is natural for evolution equations, in contrast to the case of nonlinear
wave equations. A connection between the singularity co-order of reduction operators and
the number of parameters in the corresponding families of invariant solutions is established in
section 7. Section 8 is devoted to first co-order singular reduction operators of general partial
differential equations in two independent and one dependent variables.

2. Reduction operators of differential equations

Following [11, 12, 22, 26], in this section we briefly collect the required notions and results
on nonclassical (conditional) symmetries of differential equations. Also, we argue for the use
of the name ‘reduction operators’ instead of ‘nonclassical (conditional) symmetry operators’.
In accordance with the aims of this paper we restrict our considerations to the case of two
independent variables and a single reduction operator.

The set of (first-order) differential operators (or vector fields) of the general form

Q = ξ i(x, u)∂i + η(x, u)∂u, (ξ 1, ξ 2) �= (0, 0)

will be denoted by Q. In what follows, x denotes the pair of independent variables (x1, x2) and
u is treated as the unknown function. The index i runs from 1 to 2, and we use the summation
convention for repeated indices. Subscripts of functions denote differentiation with respect to
the corresponding variables, ∂i = ∂/∂xi and ∂u = ∂/∂u. Any function is considered as its
zero-order derivative. All our considerations are carried out in the local setting.

Two differential operators Q̃ and Q are called equivalent if they differ by a multiplier which
is a non-vanishing function of x and u: Q̃ = λQ, where λ = λ(x, u), λ �= 0. The equivalence
of operators will be denoted by Q̃ ∼ Q. Factoring Q with respect to this equivalence relation
we arrive at Qf . Elements of Qf will be identified with their representatives in Q.
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The first-order differential function

Q[u] := η(x, u) − ξ i(x, u)ui

is called the characteristic of the operator Q. The characteristic PDE Q[u] = 0 (also known
as the invariant surface condition) has two functionally independent solutions ζ(x, u) and
ω(x, u). Therefore, the general solution of this equation can be implicitly represented in the
form F(ζ, ω) = 0, where F is an arbitrary function.

A differential function 	 = 	[z] of the dependent variables z = (z1, . . . , zm) which in
turn are functions of a tuple of independent variables y = (y1, . . . , yn) will be considered as
a smooth function of y and derivatives of z with respect to y. The order r = ord 	 of the
differential function 	 equals the maximal order of derivatives involved in 	. More precisely,
the differential function 	 is defined as a function on a subset of the jet space J r(y|z) [14].

The characteristic equations of equivalent operators have the same set of solutions.
Conversely, any family of two functionally independent functions of x and u is a complete set
of integrals of the characteristic equation of a differential operator. Therefore, there exists a
one-to-one correspondence between Qf and the set of families of two functionally independent
functions of x and u, which is factorized with respect to the corresponding equivalence relation.
(Two families of the same number of functionally independent functions of the same arguments
are considered equivalent if any function from one of the families is functionally dependent
on functions from the other family.)

Since (ξ 1, ξ 2) �= (0, 0) we can assume without loss of generality that ζu �= 0 and Fζ �= 0
and resolve the equation F = 0 with respect to ζ : ζ = ϕ(ω). This implicit representation of
the function u is called an ansatz corresponding to the operator Q.

Consider an r th-order differential equation L of the form L(x, u(r)) = 0 for the unknown
function u of two independent variables x = (x1, x2). Here L = L[u] = L(x, u(r)) is a fixed
differential function of order r and u(r) denotes the set of all the derivatives of the function
u with respect to x of order not greater than r, including u as the derivative of order zero.
Within the local approach the equation L is treated as an algebraic equation in the jet space
J r = J r(x|u) of order r and is identified with the manifold of its solutions in J r :

L = {(x, u(r)) ∈ J r | L(x, u(r)) = 0}.
Denote the manifold defined by the set of all the differential consequences of the

characteristic equation Q[u] = 0 in J r by Q(r), i.e.,

Q(r) = {
(x, u(r)) ∈ J r | Dα

1 D
β

2 Q[u] = 0, α, β ∈ N ∪ {0}, α + β < r
}
,

where D1 = ∂1 + uα+1,β∂uαβ
and D2 = ∂2 + uα,β+1∂uαβ

are the operators of total differentiation
with respect to the variables x1 and x2, and the variable uαβ of the jet space J r corresponds to
the derivative ∂α+βu/∂xα

1 ∂x
β

2 .
A precise and rigorous definition of nonclassical (or conditional) symmetry was first

suggested in [11] (see also [12, 26]).

Definition 1. The differential equation L is called conditionally invariant with respect to
the operator Q if the relation Q(r)L(x, u(r))

∣∣
L∩Q(r)= 0 holds, which is called the conditional

invariance criterion. Then Q is called an operator of conditional symmetry (or Q-conditional
symmetry, nonclassical symmetry, etc) of the equation L.

In definition 1 the symbol Q(r) stands for the standard rth prolongation of the operator Q
[14, 17]:

Q(r) = Q +
∑

0<α+β�r

ηαβ∂uαβ
, ηαβ := Dα

1 D
β

2 Q[u] + ξ 1uα+1,β + ξ 2uα,β+1.
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The equation L is conditionally invariant with respect to Q if and only if the ansatz
ζ = ϕ(ω) constructed with Q reduces L to an ordinary differential equation Ľ: Ľ[ϕ] = 0
[26]. Namely, there exist differential functions λ̌ = λ̌[ϕ] and Ľ = Ľ[ϕ] of an order not greater
than r (i.e., functions of ω and derivatives of ϕ with respect to ω up to order r) such that
L|u=ϕ(ω) = λ̌Ľ. The function λ̌ does not vanish and may depend on θ as a parameter, where
the value θ = θ(x, u) is functionally independent of ζ and ω. The differential function Ľ is
assumed to be of minimal order ř which is possibly reached up to the equivalence generated
by nonvanishing multipliers. Then the reduced equation Ľ is of essential order ř .

This is why we will also call operators of conditional symmetry reduction operators of L.
Another treatment of conditional invariance is that the system L ∩ Q(r) is compatible in

the sense of not involving any nontrivial differential consequences [15, 16].
The property of conditional invariance is compatible with the equivalence relation on Q

[12, 26]:

Lemma 1. If the equation L is conditionally invariant with respect to the operator Q then it
is conditionally invariant with respect to any operator which is equivalent to Q.

The set of reduction operators of the equation L is a subset of Q and so will be denoted
by Q(L). In view of lemma 1, Q ∈ Q(L) and Q̃ ∼ Q imply Q̃ ∈ Q(L), i.e., Q(L) is closed
under the equivalence relation on Q. Therefore, the factorization of Q with respect to this
equivalence relation can be naturally restricted to Q(L), resulting in the subset Qf(L) of Qf .
As in the whole set Qf , we identify elements of Qf(L) with their representatives in Q(L). In
this approach the problem of completely describing all reduction operators for L is equivalent
to finding Qf(L).

The conditional invariance criterion admits the following useful reformulation [26].

Lemma 2. Given a differential equation L: L[u] = 0 of order r and differential functions
L̃[u] and λ[u] �= 0 of an order not greater than r such that L|Q(r)

= λL̃|Q(r)
, an operator Q is a

reduction operator of L if and only if the relation Q(r̃)L̃
∣∣
L̃∩Q(r̃)

= 0 holds, where r̃ = ord L̃ � r

and the manifold L̃ is defined in J r̃ by the equation L[u] = 0.

The classification of reduction operators can be considerably enhanced and simplified by
considering Lie symmetry and equivalence transformations of (classes of) equations.

Lemma 3. Any point transformation of x and u induces a one-to-one mapping of Q into
itself. Namely, the transformation g: x̃i = Xi(x, u), ũ = U(x, u) generates the mapping
g∗: Q → Q such that the operator Q is mapped to the operator g∗Q = ξ̃ i∂x̃i

+ η̃∂ũ, where
ξ̃ i (x̃, ũ) = QXi(x, u), η̃(x̃, ũ) = QU(x, u). If Q′ ∼ Q then g∗Q′ ∼ g∗Q. Therefore, the
corresponding factorized mapping gf : Qf → Qf also is well defined and bijective.

Definition 2 ([20]). Differential operators Q and Q̃ are called equivalent with respect to a
group G of point transformations if there exists g ∈ G for which the operators Q and g∗Q̃ are
equivalent. We denote this equivalence by Q ∼ Q̃ mod G.

Lemma 4. Given any point transformation g of an equation L to an equation L̃, g∗ maps
Q(L) to Q(L̃) bijectively. The same is true for the factorized mapping gf from Qf(L) to
Qf(L̃).

Corollary 1. Let G be the point symmetry group of an equation L. Then the equivalence of
operators with respect to the group G generates equivalence relations in Q(L) and in Qf(L).
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Consider the class L|S of equations Lθ : L(x, u(r), θ) = 0 parameterized with the
parameter-functions θ = θ(x, u(r)). Here L is a fixed function of x, u(r) and θ. The
symbol θ denotes the tuple of arbitrary (parametric) differential functions θ(x, u(r)) =
(θ1(x, u(r)), . . . , θ

k(x, u(r))) running through the set S of solutions of the system
S(x, u(r), θ(q)(x, u(r))) = 0. This system consists of differential equations on θ , where x
and u(r) play the role of independent variables and θ(q) stands for the set of all the derivatives
of θ of order not greater than q. In what follows we call the functions θ arbitrary elements.
Denote the point transformation group preserving the form of the equations from L|S by G∼.

Let P denote the set of the pairs consisting of an equation Lθ from L|S and an operator Q
from Q(Lθ ). In view of lemma 4, the action of transformations from the equivalence group
G∼ on L|S and {Q(Lθ ) | θ ∈ S} together with the pure equivalence relation of differential
operators naturally generates an equivalence relation on P.

Definition 3. Let θ, θ ′ ∈ S,Q ∈ Q(Lθ ),Q
′ ∈ Q(Lθ ′). The pairs (Lθ ,Q) and (Lθ ′ ,Q′) are

called G∼-equivalent if there exists g ∈ G∼ such that g transforms the equation Lθ to the
equation Lθ ′ , and Q′ ∼ g∗Q.

The classification of reduction operators with respect to G∼ will be understood as the
classification in P with respect to this equivalence relation, a problem which can be investigated
similar to the usual group classification in classes of differential equations. Namely, we
construct firstly the reduction operators that are defined for all values of θ . Then we classify,
with respect to G∼, the values of θ for which the equation Lθ admits additional reduction
operators.

3. Singular vector fields of differential functions

Consider a vector field Q = ξ i(x, u)∂i + η(x, u)∂u with (ξ 1, ξ 2) �= (0, 0), defined in the space
(x, u), and a differential function L = L[u] of order ord L = r (i.e., a smooth function of
x = (x1, x2) and derivatives of u of orders up to r).

Definition 4. The vector field Q is called singular for the differential function L if there exists
a differential function L̃ = L̃[u] of an order less than r such that L|Q(r)

= L̃|Q(r)
. Otherwise Q

is called a regular vector field for the differential function L. If the minimal order of differential
functions whose restrictions on Q(r) coincide with L|Q(r)

equals k (k < r) then the vector field
Q is said to be of singularity co-order k for the differential function L. The vector field Q is
called ultra-singular for the differential function L if L|Q(r)

≡ 0.

For convenience, the singularity co-order of ultra-singular vector fields and the order of
identically vanishing differential functions are defined to equal −1. Regular vector fields for
the differential function L are defined to have singularity co-order r = ord L. The singularity
co-order of a vector field Q for a differential function L will be denoted by scoL Q.

If Q is a singular vector field for L then any vector field equivalent to Q is singular for L
with the same co-order of singularity.

A function L̃ satisfying the conditions of definition 4 can be constructively found. Namely,
without loss of generality we can suppose that the coefficient ξ 2 of ∂2 in Q is nonzero. Then
any derivative of u of order not greater than r can be expressed, on the manifold Q(r), via

6
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derivatives of u with respect to x1 only. For example, for the first- and second-order derivatives
we have

u2 = η̂ − ξ̂u1,

u12 = η̂1 − ξ̂1u1 + η̂uu1 − ξ̂uu
2
1 − ξ̂u11,

u22 = η̂2 − ξ̂2u1 + (η̂u − ξ̂uu1)(η̂ − ξ̂u1) − ξ̂
(
η̂1 − ξ̂1u1 + η̂uu1 − ξ̂uu

2
1 − ξ̂u11

)
,

(1)

where ξ̂ = ξ 1/ξ 2 and η̂ = η/ξ 2. After substituting the expressions for the derivatives into L,
we obtain a differential function L̂ depending only on x, u and derivatives of u with respect to
x1. We will call L̂ a differential function associated with L on the manifold Q(r). The vector
field Q is singular for the differential function L if and only if the order of L̂ is less than r. The
co-order of singularity of Q equals the order of L̂. The vector field Q is ultra-singular if and
only if L̂ ≡ 0. Therefore, testing that a vector field is singular for a differential function with
two independent variables is realized in an entirely algorithmic procedure and can be easily
included in existing programs for symbolic calculations of symmetries.

Consider the two-dimensional module {Qθ = θ iQi} of vector fields over the ring of
smooth functions of (x, u) generated by the vector fields Qi = ξ ij (x, u)∂j +ηi(x, u)∂u, where
rank(ξ i1, ξ i2, ηi) = 2. In the remainder of this section the parameter tuple θ = (θ1, θ2) runs
through the set of pairs of smooth functions depending on (x, u), and i and j run from 1 to 2.

Definition 5. The module {Qθ } is called singular for the differential function L if for any θ

with (θ iξ i1, θ iξ i2) �= (0, 0) the vector field Qθ is singular for L. The singularity co-order of
the module {Qθ } coincides with the maximum of the singularity co-orders of its elements.

By a point transformation, one of the basis vector fields, e.g. Q2, can be reduced to
∂u (transforming L simultaneously with Q1 and Q2.) Then (ξ 11, ξ 12) �= (0, 0), and up to
permutation of independent variables we can assume ξ 12 �= 0 and, therefore, set η1 = 0 and
ξ 12 = 1 by a change of basis. Any vector field from the module {Qθ } with a nonzero value
of θ1 is equivalent to the vector field Q1 + ζQ2, where ζ = θ2/θ1. All the other vector fields
from {Qθ } (which have θ1 = 0 and, therefore, are equivalent to ∂u) can be neglected since
each of them leads to the equation θ2(x, u) = 0 which completely determines u and therefore,
does not give an ansatz for u.

This justifies why, up to point transformations, it suffices to study only singular sets of
vector fields of the form {Qζ = ξ∂1 + ∂2 + ζ∂u}, with ξ a fixed smooth function of (x, u) and
ζ running through all such functions. The latter form of singular sets of vector fields will be
called reduced.

Further simplification depends on whether the module is closed under the Lie bracket.
In case it is, it can be assumed to be generated by two commuting vector fields which can
be simultaneously reduced by a point transformation to shift operators, e.g., Q1 = ∂2 and
Q2 = ∂u. Thus in the reduced form ξ can be put to 0. If the module is not closed under the
Lie bracket, we have ξu �= 0 in the reduced form. After the point transformation x̃i = xi and
ũ = ξ and a change of basis, we obtain the bases Q̃1 = ũ∂1̃ + ∂2̃ and Q̃2 = ∂ũ. Hence:

Proposition 1. In any two-dimensional module of vector fields in the space of three variables
(x1, x2, u), any basis vector fields Q1 and Q2 can be locally reduced, by point transformations,
to the form Q1 = ∂2 (resp. Q1 = u∂1 + ∂2) and Q2 = ∂u if the module is closed (resp. not
closed) with respect to the Lie bracket of vector fields.

7
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Theorem 1. A differential function L with one dependent and two independent variables
possesses a k th co-order singular two-dimensional module of vector fields if and only if it can
be represented, up to point transformations, in the form

L = Ľ(x,�r,k), (2)

where �r,k = (
ωα = D

α1
1 (ξD1 + D2)

α2u, α1 � k, α1 + α2 � r
)
, ξ ∈ {0, u}, and Ľωα

�= 0 for
some ωα with α1 = k.

Proof. Suppose that a differential function L possesses a k th co-order singular two-dimen-
sional module of vector fields {Qθ = θ iQi}. By a point transformation and a change of basis,
we represent the basis elements in the reduced form Q1 = ξ∂1 + ∂2 and Q2 = ∂u, where
ξ ∈ {0, u}, and choose the subset {Qζ = ξ∂1 + ∂2 + ζ∂u} in {Qθ }, where ζ runs through the set
of smooth functions of (x, u). The initial differential function also will be changed by these
transformations but throughout we will use the old notations for all new values.

We fix an arbitrary point z0 = (
x0, u0

(r)

) ∈ J r and consider the vector fields from {Qζ }
for which z0 ∈ Qζ

(r). This condition implies that the values of the derivatives of ζ with respect
to only x1 and x2 in the point (x0, u0) are expressed via u0

(r) and values of derivatives of ζ in
(x0, u0), containing differentiation with respect to u. The latter values are not constrained.

We introduce the new coordinates
{
xi, ωα = D

α1
1 (ξD1 + D2)

α2u, |α| � r
}

in J r instead
of the standard ones {xi, uα, |α| � r}. This is a valid change of coordinates since the Jacobian
matrix (∂ωα/∂uα′) is nondegenerate. Indeed, it is a triangular matrix with all diagonal entries
equal to 1 if the following order of multi-indices is implemented: α < β :⇔ |α| < |β|∨(|α| =
|β| ∧ α2 < β2). Note that ωα = D

α1
1 (ξD1 + D2)

α2u = D
α1
1 (Qζ )α2u on Qζ

(r).
Consider the differential function L̂ obtained from L by the above procedure of excluding,

on the manifold Qζ

(r), the derivatives of u involving differentiations with respect to x2 (see
(1)). Since Qζ is a k th co-order singular vector field for L, the function L̂ does not depend
on the derivatives u(κ,0), κ = k + 1, . . . , r . We use this condition step-by-step, starting from
the greatest value of κ and re-writing the derivatives in the new coordinates of J r and in terms
of L.

Thus, in the new coordinates the equation L̂u(r,0)
(z0) = 0 has the form Lω(r,0)

(z0) = 0.
This completes the first step. Then in the second step the equation L̂u(r−1,0)

(z0) = 0 implies
that

Lω(r−1,0)
(z0) + Lω(r−1,1)

(z0)ζu(x
0, u0) = 0.

We split with respect to the value ζu(x
0, u0) since it is unconstrained. As a result, we obtain

the equations Lω(r−1,0)
(z0) = 0 and Lω(r−1,1)

(z0) = 0.
Iterating this procedure, before the μth step, μ ∈ {1, . . . , r − k}, we derive the equations

Lω(r−μ′ ,ν)
(z0) = 0, μ′ = 0, . . . , μ − 2, ν = 0, . . . , μ′. Then the equation L̂u(r−μ+1,0)

(z0) = 0
implies that

μ−1∑
ν=0

Lω(r−μ+1,ν)
(z0)(∂u(Q

ζ )νu)|(x,u)=(x0,u0) = 0.

The values ∂ν+1
u ζ(x0, u0), ν = 0, . . . , μ−1, are unconstrained. Splitting with respect to them,

which is equivalent to splitting with respect to (∂u(Q
ζ )νu)|(x,u)=(x0,u0), ν = 0, . . . , μ−1, gives

the equations Lω(r−μ+1,ν)
(z0) = 0, ν = 0, . . . , μ − 1.

Finally, after the (r − k)th step we derive the system Lω(r−μ′ ,ν)
(z0) = 0, μ′ = 0, . . . ,

r − k + 1, ν = 0, . . . , μ′, which implies condition (2).

8
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Conversely, let an r th-order differential function L be of the form (2) (after a point
transformation). For an arbitrary smooth function ζ = ζ(x, u) we consider the vector field
Qζ = ξ∂1 + ∂2 + ζ∂u and the differential function L̃ = Ľ(x, �̃r,k) where

�̃r,k = (
ωα = D

α1
1 (Qζ )α2u, α1 � k, α1 + α2 � r

)
.

Then ord L̃ = k and

L|Qζ

(r)
= L̃|Qζ

(r)
,

i.e., {Qζ = Q1 + ζQ2}, where Q1 = ξ∂1 + ∂2,Q
2 = ∂u and ζ runs through the set of smooth

functions of (x, u), is a k th co-order singular set for the differential function L in the new
variables. We complete the set by the vector fields equivalent to its elements or ∂u and return
to the old variables. As a result, for the differential function L we construct a k th co-order
singular two-dimensional module of vector fields {Qθ = θ iQi}. �

Corollary 2. A differential function with one dependent and two independent variables admits
a k th co-order singular two-dimensional module generated by commuting vector fields if and
only if it can be reduced by a point transformation of the variables to a differential function in
which all differentiations with respect to one of the independent variables are of order � k.

Corollary 3. Any differential function with one dependent and two independent variables (not
identically vanishing) admits no ultra-singular two-dimensional module of singular vector
fields.

Note 1. It is obvious that a singular module may contain vector fields whose singularity
co-orders are less than the singularity co-order of the whole module. Suppose that
{Qζ = ξ∂1 + ∂2 + ζ∂u} is a singular set of vector fields for a differential function L, and
its singularity co-order equals k. Then the values of ζ for which scoL Qζ < k are solutions of
the equation

r−k∑
ν=0

Ľω(k,ν)
(x, �̃r,k)(∂u(Q

ζ )νu) = 0,

where �̃r,k = (
D

α1
1 (Qζ )α2u, α1 � k, α1 + α2 � r

)
and Ľ is defined in theorem 1. In other

words, the regular values of ζ associated with the vector fields of the maximal singularity
co-order k in {Qζ } satisfy the inequality

r−k∑
ν=0

Ľω(k,ν)
(x, �̃r,k)(∂u(Q

ζ )νu) �= 0.

4. Singular vector fields of differential equations

We will say that a vector field Q is (strongly) singular for a differential equation L if it
is singular for the differential function L[u] which is the left-hand side of the canonical
representation L[u] = 0 of the equation L. Usually we will omit the attribute ‘strongly’.

Since left-hand sides of differential equations are defined up to multipliers which are
nonvanishing differential functions, the conditions from definition 4 can be weakened when
considering differential equations.

Definition 6. A vector field Q is called weakly singular for the differential equation L:
L[u] = 0 if there exists a differential function L̃ = L̃[u] of an order less than r and

9
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a nonvanishing differential function λ = λ[u] of an order not greater than r such that
L|Q(r)

= λL̃|Q(r)
. Otherwise Q is called a weakly regular vector field for the differential

equation L. If the minimal order of differential functions whose restrictions on Q(r) coincide,
up to nonvanishing functional multipliers, with L|Q(r)

is equal to k (k < r) then the vector field
Q is said to be weakly singular of co-order k for the differential equation L.

The notions of ultra-singularity in the weak and the strong sense coincide. Analogous
to the case of strong regularity, weakly regular vector fields for the differential equation L
are defined to have weak singularity co-order r = ord L. The weak singularity co-order of a
vector field Q for an equation L will be denoted by wscoL Q.

Note that strong singularity implies weak singularity and hence weak regularity implies
strong regularity. It is obvious that the weak singularity co-order is never greater and may be
less than the strong singularity co-order. In particular, strongly regular vector fields may be
singular in the weak sense. For example, the equation uttt = euxx (ux +u) possesses the singular
vector field ∂t whose strong and weak singularity co-order equal 2 and 1, respectively. The
same vector field ∂t is strongly regular and is of weak singularity co-order 1 for the equation
ut = euxx (ux + u).

If Q is a weakly singular vector field for L then any vector field equivalent to Q is weakly
singular for L with the same co-order of weak singularity.

Weakly singular vector fields are related to characteristic directions (cf [14] concerning
characteristic directions and characteristic hypersurfaces): Given a vector field Q =
ξ i(x, u)∂i + η(x, u)∂u weakly singular for a differential equation L, in each point of the
manifold L the vector (ξ 1, ξ 2) is orthogonal to a characteristic direction of the equation L in
this point.

Let L̂ be a differential function associated with L on the manifold Q(r), namely, obtained
from L via excluding those derivatives of u which contain differentiations with respect to x2

in view of equations defining Q(r). Suppose additionally that L̂ is of maximal rank in the
derivative u of the highest order k appearing in this differential function, i.e., L̂u(k,0)

�= 0 on
the solution manifold of the equation L̂ = 0. Then the weak singularity co-order of Q for the
equation L: L = 0 equals the order k of L̂ and, therefore, the strong singularity co-order of Q.
Hence in this case testing that a vector field is weakly singular for a partial differential equation
with two independent variables can be implemented via an entirely algorithmic procedure.

Theorem 2. An r th-order differential equation L: L[u] = 0 of maximal rank with
one dependent and two independent variables possesses a k th co-order weakly singular
two-dimensional module of vector fields if and only if L can be represented, up to point
transformations, in the form

L = �[u]Ľ(x,�r,k), (3)

where � is a nonvanishing differential function of order not greater than r,�r,k = (
ωα =

D
α1
1 (ξD1 + D2)

α2u, α1 � k, α1 + α2 � r
)
, ξ ∈ {0, u} and Ľωα

�= 0 for some ωα with α1 = k.

Proof. We will freely use the notations and definitions from the proof of theorem 1.
Suppose first that a differential equation L: L[u] = 0 is of maximal rank and admits a kth

co-order weakly singular two-dimensional module of vector fields. Up to point transformations
and changes of module basis, we may consider only a set {Qζ = ξ∂1 + ∂2 + ζ∂u} of singular
vector fields in the reduced form.

We fix an arbitrary point z0 = (
x0, u0

(r)

) ∈ L ⊂ J r and choose the vector fields from {Qζ }
for which z0 ∈ Qζ

(r). This condition implies that the values of derivatives of ζ with respect

10
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to only x1 and x2 in the point (x0, u0) are expressed via u0
(r) and values of derivatives of ζ in

(x0, u0), containing differentiation with respect to u. The latter values are not constrained.
The differential function L̂ is obtained from L by excluding, on the manifold Qζ

(r),
derivatives of u involving differentiations with respect to x2 (see (1)). k th co-order weak
singularity of Qζ for L leads to L̂u(κ,0)

(z0) = 0, κ = k + 1, . . . , r . We use this condition
step-by-step as in the proof of theorem 1, starting from the greatest value of κ and re-writing
the derivatives in the new coordinates {xi, ωα = D

α1
1 (ξD1 + D2)

α2u, |α| � r} of J r and in
terms of L. Therefore,

Lω(r−μ′ ,ν)
(z0) = 0, μ′ = 0, . . . , r − k + 1, ν = 0, . . . , μ′,

which is satisfied for any z0 ∈ L. Applying the Hadamard lemma to each of these equations
and then simultaneously integrating them, we obtain (3) (cf the proof of theorem 1 in [26]).

Conversely, let an r th-order differential function L be of form (3) (after a point
transformation). For an arbitrary smooth function ζ = ζ(x, u) we consider the vector field
Qζ = ξ∂1 + ∂2 + ζ∂u and the differential function L̃ = Ľ(x, �̃r,k), where

�̃r,k = (
ωα = D

α1
1 (Qζ )α2u, α1 � k, α1 + α2 � r

)
.

Then ord L̃ = k and L|Qζ

(r)
= �L̃|Qζ

(r)
, i.e., {Qζ = Q1 + ζQ2}, where Q1 = ξ∂1 + ∂2,Q

2 = ∂u

and ζ runs through the set of smooth functions of (x, u), is a k th co-order weakly singular
set for the differential equation L in the new variables. We complete the set by the vector
fields equivalent to its elements or ∂u and return to the old variables, thereby constructing a
kth co-order weakly singular two-dimensional module of vector fields {Qθ = θ iQi} for the
differential equation L. �

Corollary 4. A differential equation L: L[u] = 0 of maximal rank with one dependent and
two independent variables possesses a k th co-order weakly singular two-dimensional module
of vector fields if and only if this module is k th co-order strongly singular for L (possibly
in a representation differing from L[u] = 0 in multiplication by a nonvanishing differential
function of u).

Definition 7. A vector field Q is called a singular reduction operator of a differential equation
L if Q is both a reduction operator of L and a weakly singular vector field of L.

5. Example: evolution equations

In this section we investigate singular reduction operators of (1 + 1)-dimensional evolution
equations of the form

ut = H(t, x, u(r,x)), (4)

where r > 1, u0 := u, uk = ∂ku/∂xk, u(r,x) = (u0, u1, . . . , ur) and Hur
�= 0. (We revert to

the notation t and x for x1 and x2, respectively, and change the notations of the corresponding
derivatives.) Evolution equations are quite specific from the point of view of singular vector
fields and singular reduction operators.

Proposition 2. A vector field Q = τ(t, x, u)∂t + ξ(t, x, u)∂x + η(t, x, u)∂u is singular for the
differential function L = ut −H(t, x, u(r,x)) of order r > 1 if and only if τ = 0. The co-order
of singularity of any singular vector field for any such differential function equals 1.

Proof. Suppose that τ �= 0. Excluding the derivative ut from L according to the equation
ut = η/τ − ξux/τ results in a differential function L̃ = η/τ − ξux/τ − H(t, x, u(r,x)). Since

11
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ord L̃ = r = ord L, the vector field Q is not singular in this case. Therefore, for the vector
field Q to be singular, the coefficient τ has to vanish.

If τ = 0 and therefore ξ �= 0, all the derivatives uk, k = 1, . . . , r , can be expressed, on the
manifold Q(r) via t, x and u: uk = (∂x + ζ∂u)

k−1ζ, k = 1, . . . , r , where ζ = η/ξ . Using these
expressions for excluding the derivatives uk, k = 1, . . . , r from L, we obtain the differential
function

L̃ = ut − H̃ (t, x, u), H̃ := H(t, x, u, ζ, ζx + ζ ζu, . . . , (∂x + ζ∂u)
r−1ζ ),

whose order equals 1. Hence the vector field Q is singular for the differential function L, and
its singularity co-order equals 1. �

Corollary 5. For any (1 + 1)-dimensional evolution equation, the corresponding differential
function possesses exactly one set of singular vector fields in the reduced form, namely,
S = {∂x + ζ(x, u)∂u}. The singularity co-order of S equals 1.

It is obvious that under the condition Hur
�= 0 a vector field is singular for the differential

function ut − H(t, x, u(r,x)) if and only if it is weakly singular for the differential equation
ut = H(t, x, u(r,x)). Hence we do not distinguish between strong and weak singularity (cf
corollary 4).

The vector fields ∂2 and ∂u generating the singular module associated with S commute and
the differential function L contains only first-order differentiation with respect to t (namely, in
the form of the derivative ut ). This perfectly agrees with corollary 2.

We fix an arbitrary equation L of form (4) and denote by Q0(L) the set of reduction
operators of L, belonging to S. For the equation L and Q ∈ Q0(L), the conditional invariance
criterion implies only the single rth-order equation

ζt + ζuH̃ = H̃x + ζ H̃u, H̃ := H(t, x, u, ζ, ζx + ζ ζu, . . . , (∂x + ζ∂u)
r−1ζ ),

with respect to the single unknown function ζ with three independent variables t, x and u,
which we will denote by DE0(L). In other words, the system of determining equations in this
case consists of the single equation DE0(L) and, therefore, is not overdetermined. DE0(L) is
the compatibility condition of the equations ux = ζ and L.

Theorem 3. Up to the equivalences of operators and solution families, for any equation
of form (4) there exists a one-to-one correspondence between one-parametric families of its
solutions and reduction operators with zero coefficients of ∂t . Namely, each operator of this
kind corresponds to the family of solutions which are invariant with respect to this operator.
The problems of the construction of all one-parametric solution families of equation (4) and
the exhaustive description of its reduction operators with zero coefficients of ∂t are completely
equivalent.

Proof. Let L be an equation from class (4) and Q = ∂x + ζ∂u ∈ Q0(L), i.e., the coefficient
ζ = ζ(t, x, u) satisfies the equation DE0(L). An ansatz constructed with Q has the form
u = f (t, x, ϕ(ω)), where f = f (t, x, ϕ) is a given function, fϕ �= 0, ϕ = ϕ(ω) is the
new unknown function and ω = t is the invariant independent variable. This ansatz reduces
L to a first-order ordinary differential equation L′ in ϕ, solvable with respect to ϕ′. The
general solution of the reduced equation L′ can be represented in the form ϕ = ϕ(ω, �),
where ϕ� �= 0 and � is an arbitrary constant. Substituting this solution into the ansatz results
in the one-parametric family F of solutions u = f̃ (t, x, �) of L with f̃ = f (t, x, ϕ(t, �)).
Expressing the parameter � from the equality u = f̃ (t, x, �), we obtain that � = �(t, x, u),
where �u �= 0. Then ζ = ux = −�x/�u for any u ∈ F , i.e., for any admissible value of
(t, x, �). This implies that ζ = −�x/�u for any admissible value of (t, x, u).

12
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Conversely, suppose that F = {u = f (t, x, �)} is a one-parametric family of solutions
of L. The derivative f� is nonzero since the parameter � is essential. We express � from
the equality u = f (t, x, �): � = �(t, x, u) for some function � = �(t, x, u) with �u �= 0.
Consider the operator Q = ∂x + ζ∂u, where the coefficient ζ = ζ(t, x, u) is defined by
ζ = −�x/�u. Q[u] = 0 for any u ∈ F . The ansatz u = f (t, x, ϕ(ω)), where ω = t ,
associated with Q, reduces L to the equation ϕω = 0. Therefore [26], Q ∈ Q0(L) and hence
the function ζ satisfies DE0(L). �

Corollary 6. The nonlinear (1 + 2)-dimensional evolution equation DE0(L) is reduced by the
composition of the nonlocal substitution ζ = −�x/�u, where � is a function of (t, x, u), and
the hodograph transformation

the new independent variables: t̃ = t, x̃ = x, � = �,

the new dependent variable: ũ = u

to the initial equation L in the function ũ = ũ(t̃ , x̃, �) with � playing the role of a parameter.

Note 2. One-parametric families u = f (t, x, �) and u = f̃ (t, x, �̃) are defined to be
equivalent if they consist of the same functions and differ only by parameterizations, i.e., if
there exists a function ζ = ζ(�) such that ζ� �= 0 and f̃ (t, x, ζ(�)) = f (t, x, �). Equivalent
one-parametric families of solutions are associated with the same operator from Q0(L) and
have to be identified.

Note 3. The triviality of the above ansatz and the reduced equation results from the above
special representation for the solutions of the determining equation. Under this approach
difficulties in the construction of ansatzes and the integration of the reduced equations are
replaced by difficulties in obtaining the representation for the coefficients of the reduction
operators.

The above consideration shows that for any evolution equationL the conventional partition
of the set Q(L) of its reduction operators with the conditions τ �= 0 and τ = 0 is natural since
it coincides with the partition of Q(L) into the singular and regular subsets. This is a specific
property of evolution equations which does not hold for general partial differential equations
in two independent variables. After factorizing the subsets of Q(L) with respect to the usual
equivalence relation of reduction operators, we obtain two different cases of inequivalent
reduction operators (the regular case τ = 1 and the singular case τ = 0 and ξ = 1), which
have to be studied separately.

Singular reduction operators of L are described in a unified ‘no-go’ way. All singular
reduction operators of L have the same singularity co-order equal to 1 and hence reduce L
to first-order ordinary differential equations. The coincidence of the singularity co-orders
guarantees the existence of a bijection between the set of singular reduction operators of L
and the set of one-parametric families of its solutions (up to the natural equivalence relations
in these sets). As a result, in the case τ = 0 and ξ = 1 the determining equation for a
single coefficient of ∂u is reduced, with no additional assumptions and conditions, to the initial
equation L by a nonlocal transformation (cf corollary 6).

The regular case τ = 1 is more complicated than the singular one. It essentially depends
on the structure of the equation including the order, the kind of nonlinearities, etc. Up to now
there are no exhaustive results on regular reduction operators even for second-order evolution
equations. Only certain subclasses of such equations were investigated. See, e.g., [1, 5, 21, 22]
for the complete classifications of regular reduction operators for some subclasses of second-
order evolution equations parameterized by functions of single arguments. For example, even
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for the class of nonlinear diffusion equations of the general form ut = (f (u)ux)x (a classical
example of solving a group classification problem for partial differential equations [17]), the
set of values of the parameter-function f which correspond to equations possessing non-Lie
regular reduction operators has not yet been found. Most evolution equations have no regular
reduction operators. A simple example is

ut = uxx + u eux + x e2ux + t e3ux + e4ux + e5ux .

Some evolution equations (the linear ones [10, 21], Burgers’ equation [13], etc) possess so
many regular reduction operators that ‘no-go’ statements like those for singular reduction
operators are true for them, but the nature of this ‘no-go’ differs from the ‘no-go’ of the
singular case and is related to the property of linearity or linearizability of the corresponding
evolution equations.

6. Example: nonlinear wave equations

The next example which we study in detail within the framework of singular reduction
operators is given by the class of nonlinear wave equations (in the characteristic, or light-cone,
variables) of the general form

u12 = F(u). (5)

Here F is an arbitrary smooth function of u. This class essentially differs from the class of
evolution equations within the framework of singular vector fields. The main differences
are that each differential function corresponding to an equation from class (5) has two
singular sets of vector fields and these sets contain vector fields of lower singularity co-
orders than the singularity co-orders of the whole sets. Thus, for any F the vector
field Q = ξ i(x, u)∂i + η(x, u)∂u is singular for the corresponding differential function
L = u12 − F(u) if and only if ξ 1ξ 2 = 0. Moreover, it is obvious that there are no differences
between strong and weak singularity of vector fields for equations from class (5). Indeed,
suppose that ξ 2 �= 0. Excluding the derivatives u2 and u12 from L according to (1), we obtain
a differential function L̃ with the coefficient −ξ 1/ξ 2 of u11. We have ord L̃ < 2 if and only if
ξ 1 = 0.

Therefore, for any F the differential function L = u12 − F(u) possesses exactly two sets
of singular vector fields in the reduced form, S = {∂2 + ζ(x, u)∂u} and S∗ = {∂1 + ζ ∗(x, u)∂u}.
The vector fields equivalent to ∂u are not suitable as reduction operators. Any singular vector
field of L is equivalent to one of the above fields. Moreover, each equation of the form (5)
admits the discrete symmetry transformation permuting the variables x1 and x2. This
transformation generates a one-to-one mapping between S and S∗ (cf corollary 1). Hence
it suffices, up to equivalence of vector fields (and permutation of x1 and x2), to investigate
only singular reduction operators from the set S.

For an equation L from class (5) and an operator Q = ∂2 + ζ∂u the conditional invariance
criterion takes the form

(ζ12 + ζ1uu2 + ζ2uu1 + ζuuu1u2 + ζuu12)|L∩Q(2)
= ζFu.

The intersection L ∩ Q(2) is singled out from J 2 by the equations u2 = ζ, ζ1 + ζuu1 = F and
u12 = F . Our further considerations therefore depend on the values of ζu and Fu. We analyse
all the possible cases.

Let ζu = 0 and Fu = 0. Then Q is an ultra-singular vector field for the differential function
L. The third equation defining L ∩ Q(2) takes the form ζ1 = F and contains no derivatives of
u. It should be assumed as a condition with respect to ζ and hence the conditional invariance
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criterion is identically satisfied in this case. An ansatz constructed with the operator Q is
u = ϕ(ω) +

∫
ζdx2, where ω = x1. It reduces equation (5) to an identity. This is explained by

the ultra-singularity of the reduction operator Q.
If ζu = 0 and Fu �= 0, the singularity co-order of Q for the differential function L equals 0.

The third equation defining L ∩ Q(2) again takes the form ζ1 = F but now can be solved with
respect to u: u = F̌ (ζ1), where F̌ is the inverse to F. Then the conditional invariance criterion
is equivalent to the equation ζ12 = ζFu(F̌ (ζ1)) with respect to ζ . The ansatz constructed
with the operator Q reduces equation (5) to the algebraic equation F(ϕ +

∫
ζ dx2) = ζ1 for the

function ϕ in agreement with the singularity co-order 0 of Q. Indeed, inverting F, we obtain
the equality ϕ = F̌ (ζ1) − ∫

ζdx2 whose right-hand side does not depend on x2 in view of the
equation on ζ . Conversely, let us fix a solution u = f (x) of equation (5) and set ζ = f2.
Then ζ12 = ζFu(F̌ (ζ1)), i.e., in view of the conditional invariance criterion Q = ∂2 + ζ∂u is
a reduction operator of equation (5), and ζu = 0. The solution u = f (x) is invariant with
respect to Q. The above results can be summed up as follows:

Theorem 4. For any equation from class (5) with Fu �= 0 there exists a one-to-one
correspondence between its solutions and reduction operators of the form Q = ∂2 + ζ(x)∂u

(resp. Q∗ = ∂1 + ζ ∗(x)∂u). Namely, each operator of this kind is of singularity co-order 0 and
corresponds to the solution which is invariant with respect to this operator. The problems of
solving an equation from class (5) with Fu �= 0 and the exhaustive description of its reduction
operators of the above form are completely equivalent.

Corollary 7. Any solution u = f (x) of equation (5) with Fu �= 0 is invariant with respect
to two reduction operators Q = ∂2 + ζ(x)∂u and Q∗ = ∂1 + ζ ∗(x)∂u of equation (5), having
singularity co-order 0. Here ζ = f2 and ζ ∗ = f1. The property of possessing the same
invariant solution of equation (5) establishes a canonical bijection Q ↔ Q∗ between the sets
of reduction operators of singularity co-order 0. The adjoint values of ζ and ζ ∗ are connected
by the formulae

ζ ∗ = ζ11

Fu(F̌ (ζ1))
, ζ = ζ ∗

22

Fu(F̌ (ζ ∗
2 ))

.

The regular values of ζ for which the singularity co-order of Q coincides with the singularity
co-order of the whole family S (and equals 1) satisfy the condition ζu �= 0. The third equation
defining L ∩ Q(2) then provides the following expression for u1:

u1 = F − ζ1

ζu

=: ζ ∗.

The conditional invariance criterion implies only the single equation

ζ12 + ζ ζ1u + (ζ2u + ζ ζuu)
F − ζ1

ζu

+ ζuF = ζFu (6)

with respect to the single function ζ , i.e., in this case the system of determining equations
consists of the single equation (6) and, therefore, is not overdetermined.

Equation (6) can be rewritten in the form of the compatibility condition

ζ1 + ζ ∗ζu = ζ ∗
2 + ζ ζ ∗

u = F

of the equations u1 = ζ ∗, u2 = ζ and u12 = F . It is obvious that ζ ∗
u �= 0. Due to symmetry

with respect to the permutation of x1 and x2, we obtain the following statement.
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Proposition 3. For any equation from class (5), there exists a canonical bijection Q ↔ Q∗

between sets of its singular reduction operators of the forms Q = ∂2 + ζ(x, u)∂u and
Q∗ = ∂1 + ζ ∗(x, u)∂u, where ζu �= 0 and ζ ∗

u �= 0. This bijection is given by the formulae

Q → Q∗: ζ ∗ = F − ζ1

ζu

, Q∗ → Q: ζ = F − ζ ∗
2

ζ ∗
u

.

A solution of equation (5) is invariant with respect to the operator Q if and only if it is invariant
with respect to the operator Q∗.

Theorem 5. Up to the equivalence of solution families, for any equation from class (5)
with Fu �= 0 there exists a one-to-one correspondence between one-parametric families of
its solutions and reduction operators of the form Q = ∂2 + ζ(x, u)∂u, where ζu �= 0 (resp.
Q∗ = ∂1 + ζ ∗(x, u)∂u, where ζ ∗

u �= 0). Namely, any such operator corresponds to the family of
solutions which are invariant with respect to this operator. The problems of the construction
of all one-parametric solution families of an equation from class (5) with Fu �= 0 and the
exhaustive description of its reduction operators of the above form are completely equivalent.

Proof. In view of proposition 3, it is sufficient to consider only operators with zero coefficient
of ∂1. Although the proof is similar to the proof of the analogous statement for evolution
equations it differs from it in essential details and will therefore be presented completely.

An ansatz constructed with the operator Q = ∂2 +ζ(x, u)∂u has the form u = f (x, ϕ(ω)),
where f = f (x, ϕ) is a given function, fϕ �= 0, ϕ = ϕ(ω) is the new unknown function and
ω = x1 is the invariant independent variable. Here ζu �= 0 implies f2ϕ �= 0. Hence this
ansatz reduces equation (5) to a first-order ordinary differential equation L′ in ϕ, which is
solvable with respect to ϕ′. The general solution of the reduced equation L′ essentially
depends on an arbitrary constant �: ϕ = ϕ(ω, �), where ϕ� �= 0. Substituting the general
solution into the ansatz gives the one-parametric family F of solutions u = f̃ (x, �) of (5)
with f̃ = f (x, ϕ(x1, �)).

Conversely, suppose that Fu �= 0 and F = {u = f (x, �)} is a one-parametric family of
solutions of (5). The derivative f� is nonzero since the parameter � is essential. Therefore,
f12� = f�Fu(f ) �= 0. We express � from the equality u = f (x, �): � = �(x, u) for some
function � = �(x, u) with �u �= 0. Consider the operator Q = ∂2 +ζ∂u, where the coefficient
ζ = ζ(x, u) is defined by the formula ζ = −�2/�u. Q[u] = 0 for any u ∈ F . The ansatz
u = f (x, ϕ(ω)), where ω = x1, associated with Q, reduces (5) to the equation ϕω = 0 since
f2� �= 0. Therefore [26], Q is a reduction operator of equation (5) and hence the function ζ

satisfies equation (6). Moreover, we have ζu �= 0 since otherwise the operator Q would reduce
(5) to an algebraic equation with respect to ϕ. �

Corollary 8. Any adjoint singular reduction operators Q = ∂2 + ζ(x, u)∂u and Q∗ =
∂1 + ζ ∗(x, u)∂u of equation (5) (where necessarily ζu �= 0 and ζ ∗

u �= 0) are associated with the
same one-parametric family of solutions of this equation.

Let ζ be an arbitrary solution of equation (6). Then ζu �= 0 and Q = ∂2 + ζ(x, u)∂u is
a reduction operator of equation (5). Consider a one-parametric family F = {u = f (x, �)}
of solutions of (5), which are invariant with respect to Q. (Such a family exists in view of
theorem 5.) Expressing the parameter � from the equality u = f̃ (x, �), we obtain that
� = �(x, u), where �u �= 0. ζ = u2 = −�2/�u for any u ∈ F , i.e., for any admissible
values of (x, �). This implies that the representation ζ = −�2/�u is true for any admissible
value of (x, u). This provides the background for the following statement.
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Corollary 9. The nonlinear three-dimensional equation (6) is reduced by composition of the
Bäcklund transformation ζ = −�2/�u, ζ

∗ = −�1/�u, where � is a function of (x, u), and
the hodograph transformation

the new independent variables: x̃1 = x1, x̃2 = x2, � = �,

the new dependent variable: ũ = u

to equation (5) for the function ũ = ũ(x̃, �) with � playing the role of a parameter.

Proof. We take an arbitrary solution ζ of equation (6) (the condition ζu �= 0 is implicitly
assumed to be satisfied) and set ζ ∗ = (F − ζ1)/ζu. In view of the Frobenius theorem, the
system �2 +ζ�u = 0,�1 +ζ ∗�u = 0 with respect to the function � = �(x, u) is compatible
since its compatibility condition ζ1+ζ ∗ζu = ζ ∗

2 +ζ ζ ∗
u coincides with (6) and hence is identically

satisfied. We choose a nonconstant solution � of this system. Then �u �= 0, ζ = −�2/�u

and ζ ∗ = −�1/�u. After the hodograph transformation, the latter equations take the form
ũx̃2 = ζ(x̃, ũ) and ũx̃1 = ζ ∗(x̃, ũ). This directly implies that for any value of � the function
ũ = ũ(x̃, �) satisfies equation (5). The parameter � is essential in ũ since ũ� = 1/�u �= 0.

It follows from the proof of theorem 5 that the application of the inverse transformations
to a one-parametric family of solutions of equation (5) results in a solution of equation (6).

�

Note 4. For any equation from class (5) with Fu = 0, reduction operators of the form
Q = ∂2 + ζ(x, u)∂u, where ζu �= 0 (resp. Q∗ = ∂1 + ζ ∗(x, u)∂u, where ζ ∗

u �= 0) also
are bijectively associated with one-parametric families of its solutions, having the form
{u = f (x, �)} where f1� �= 0 (resp. f2� �= 0). The one-parametric families with f1� = 0
(resp. f2� = 0) necessarily existing in this case correspond to ultra-singular reduction
operators with ζu = 0 (resp. ζ ∗

u = 0), and the correspondence is not one-to-one.

The above investigation of singular reduction operators of nonlinear wave equations of
the form (5) shows that for these equations the natural partition of the corresponding sets of
reduction operators is into triples of subsets singled out by the conditions

(1) ξ 1 = 0; (2) ξ 2 = 0; (3) ξ 1ξ 2 �= 0.

After the factorization with respect to the equivalence relation of vector fields, we obtain
three subsets of reduction operators, which have to be investigated separately. The defining
conditions for these subsets are, respectively,

(1) ξ 1 = 0, ξ 2 = 1; (2) ξ 2 = 0, ξ 1 = 1; (3) ξ 1 �= 0, ξ 2 = 1.

Since any equation from class (5) admits the point symmetry permuting x1 and x2, the second
case is reduced to the first one and can be omitted. Finally we have two essentially different
cases after factorization: the singular case ξ 1 = 0, ξ 2 = 1 and the regular case ξ 1 �= 0, ξ 2 = 1.
The gauge ξ 2 = 1 is not uniquely possible in the regular case and may be varied for optimizing
the further consideration of this case.

Consider the other standard form

u11 − u22 = F(u) (7)

of nonlinear wave equations, obtained from (5) via the point transformation x̃1 = x1 −x2, x̃2 =
x1 + x2, ũ = u. Using this transformation, all the results derived for class (5) can easily be
extended to class (7). Thus, any equation of form (7) possesses two singular sets of reduction
operators, singled out by the conditions ξ 1 = −ξ 2 and ξ 1 = ξ 2, and one regular set of
reduction operators, associated with the condition ξ 1 �= ±ξ 2. The singular sets are mapped
to each other by alternating the sign of x2 and hence one of them can be excluded from the
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consideration. After factorization with respect to the equivalence relation of vector fields, we
have two cases for our further study: the singular case ξ 1 = ξ 2 = 1 and the regular case
ξ 1 �= ±1, ξ 2 = 1.

For nonlinear wave equations of the general form u11 − (G(u)u2)2 = F(u), where
G(u) > 0, the natural partitions of the sets of reduction operators are determined by more
complicated conditions depending on the parameter-function G. We will not discuss these
equation here. We only remark that the singular sets of the corresponding reduction operators
are associated with the conditions ξ 2 = √

Gξ 1 and ξ 2 = −√
Gξ 1, respectively.

The above examples underline that the application of the conventional partition for
factorization of sets of reduction operators often leads to the splitting of uniform cases and to
combining essentially different ones. As a result, the derived systems of determining equations
for the coefficients of reduction operators is far from optimal and difficult to investigate.
Therefore, natural partitions based on taking into account the structure of singular families of
reduction operators offers a decisive advantage.

7. Reduction operators and parametric families of solutions

Proposition 4. Let Q be a reduction operator of an equation L. Then the weak singularity co-
order of Q for L equals the essential order of the corresponding reduced ordinary differential
equation.

Proof. We carry out a point transformation in such a way that in the new variables the operator
Q has the form Q = ∂x2 . (For convenience, for the new variables we use the same notations
as for the old ones.) Then an ansatz constructed with Q is u = ϕ(ω), where ϕ = ϕ(ω) is the
new unknown function and ω = x1 is the invariant independent variable. The manifold Q(r)

is defined by the system uα = 0, where α = (α1, α2), α2 > 0, α1 + α2 � r = ord L.
Since Q ∈ Q(L), there exist differential functions λ̌ = λ̌[ϕ] and Ľ = Ľ[ϕ] of an order

not greater than r such that L|u=ϕ(ω) = λ̌Ľ (cf [26]). The function λ̌ does not vanish and may
depend on x2 as a parameter. The function Ľ is assumed to be of minimal order ř which may
be attained up to the equivalence generated by nonvanishing multipliers. Then the reduced
equation Ľ: Ľ = 0 has essential order ř .

The condition wscoL Q = k means that there exists a strictly k th-order differential
function L̃ = L̃[u] and a nonvanishing differential function λ̃ = λ̃[u] of an order not
greater than r, which depend at most on x and derivatives of u with respect to x1, such
that L|Q(r)

= λ̃L̃|Q(r)
.

If ř would be less than k, we could use λ̃new = λ̌|u�ϕ and L̃new = Ľ|u�ϕ in the definition
of weak singularity and would arrive at the contradiction wscoL Q � ord L̃new = ř < k.
Therefore, ř � k. (Here, ‘y � z’ means that the value y should be substituted instead of the
value z.)

Suppose that ř > k. We have the equality λ̌Ľ = (λ̃L̃)|u=ϕ(ω) in which the variable x2

plays the role of a parameter. Fixing a value x0
2 of x2, we obtain the representation

Ľ = �[ϕ]L̃

∣∣∣∣
u=ϕ(ω),x2=x0

2

, � := λ̃|u=ϕ(ω)

λ̌

∣∣∣∣
x2=x0

2

�= 0.

Since ord L̃|u=ϕ(ω),x2=x0
2

� k < ř , this representation contradicts the condition that ř is the

essential order of the reduced equation Ľ. Therefore, ř = k. The inverse change of variables
preserves the claimed property. �
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Corollary 10. Let Q be a reduction operator of an equation L. Then the weak singularity co-
order of Q for L equals the maximal number of essential parameters in families of Q-invariant
solutions of L.

Proof. The essential order ř of the reduced ordinary differential equation Ľ associated with
Q coincides with the weak singularity co-order of Q for L. The maximal number of essential
parameters in solutions of Ľ equals the order of Ľ. The substitution of these solutions into
the corresponding ansatz leads to parametric families of Q-invariant solutions of L, and all Q-
invariant solutions of L are obtained in this way. Therefore, the maximal number of essential
parameters in families of Q-invariant solutions of L equals ř . �

Corollary 11. Let Q be a k th co-order weakly singular reduction operator of an equation
L. Suppose additionally that a differential function of minimal order, associated with L on
the manifold Q(r) up to a nonvanishing multiplier, is of maximal rank in the derivative of u of
the highest order k appearing in this differential function. Then L possesses a k-parametric
family of Q-invariant solutions, and any Q-invariant solution of L belongs to this family.

Proof. Under this assumption, the reduced ordinary differential equation Ľ associated with Q
can be written in normal form and hence has a k-parametric general solution which contains all
solutions of Ľ. Substituting it into the corresponding ansatz, this solution gives a k-parametric
family of Q-invariant solutions of L. There are no other Q-invariant solutions of L. �

Corollary 12. Suppose that a differential function of minimal order, associated with L on
the manifold Q(r) up to a nonvanishing multiplier, is of maximal rank in the highest order
derivative of u appearing in this differential function. If the maximal number of essential
parameters in families of Q-invariant solutions of L is not less than the weak singularity
co-order of Q for L then Q is a reduction operator of L.

Proof. Point transformations of the variables do not change the claimed property. We use
the variables and notations from the proof of proposition 4. Consider the differential function
L̂[ϕ] = L̃|u=ϕ(ω). It depends on x2 as a parameter and ord L̂ = k. Due to the condition of
maximal rank, we can resolve the equation L̂ = 0 with respect to the highest order derivative
ϕ(k): ϕ(k) = R[ϕ], where ord R < k.

If Rx2 �= 0, splitting with respect to x2 in the equation L̂ = 0 results in an ordinary
differential equation R̃[ϕ] = 0 of an order lower than k. Any Q-invariant solution of L has
the form u = ϕ(ω), where the function ϕ satisfies, in particular, the equation R̃[ϕ] = 0.
This contradicts the condition that the maximal number of essential parameters in families of
Q-invariant solutions of L is not less than k.

Therefore, Rx2 = 0, i.e., the equation ϕ(k) = R[ϕ] is a reduced equation which is obtained
from L by the substitution of the ansatz u = ϕ(ω) constructed with the operator Q = ∂2. �

Note 5. For any operator Q, the maximal number of essential parameters in families of
Q-invariant solutions of L cannot be greater than wscoL Q.

Summing up the above consideration, we can formulate the following statement.

Proposition 5. Suppose that a differential function of minimal order, associated with the
differential function L[u] on the manifold Q(r) (r = ord L) up to a nonvanishing multiplier,
is of maximal rank in the highest order derivative of u appearing in this differential function.
Then any two of the following properties imply the third one:

(1) Q is a reduction operator of the equation L: L = 0.
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(2) The weak singularity co-order of Q for L equals k (0 � k � r).
(3) The equation L possesses a k-parametric family of Q-invariant solutions, and any Q-

invariant solution of L belongs to this family.

The properties of ultra-singular vector fields as reduction operators are obvious.

Proposition 6.

(1) Any ultra-singular vector field Q of a differential equation L is a reduction operator of
this equation. An ansatz constructed with Q reduces L to the identity. Therefore, the
family of Q-invariant solutions of L is parameterized by an arbitrary function of a single
Q-invariant variable.

(2) If the family of Q-invariant solutions of L is parameterized by an arbitrary function of a
single Q-invariant variable then Q is an ultra-singular vector field for L.

8. Reduction operators of singularity co-order 1

Encouraged by the above investigation of evolution and, especially, wave equations, we study
co-order one singular reduction operators of general partial differential equations in two
independent and one dependent variables.

Consider an equation L: L = 0, where L = L[u] is a differential function of order r > 1.
Suppose that the function L admits a first co-order singular module of vector fields. (In view
of corollary 4, we can restrict ourselves to considering only strong singularity of vector fields
for differential equations.) Without loss of generality, up to changing variables we can assume
that the module contains a first co-order singular set S = {Qζ } of vector fields in the reduced
form, i.e., Qζ = ξ∂1 +∂2 +ζ∂u for any smooth function ζ of (x, u) and a fixed smooth function
ξ . Additionally, we can assume ξ ∈ {0, u}.

By theorem 1, the differential function L can be written in the form L = Ľ(x,�r,1), where

�r,1 = (
ωα = D

α1
1 (ξD1 + D2)

α2u, α1 � 1, α1 + α2 � r
)
,

and Ľωα
�= 0 for some ωα with α1 = 1. Then the restriction of L to Qζ

(r) coincides with the
restriction, to the same manifold Qζ

(r), of the function L̃ζ = Ľ(x, �̃r,1), where

�̃r,1 = (
D

α1
1 (Qζ )α2u, α1 � 1, α1 + α2 � r

)
.

Thus, the form of L̃ζ is determined by the forms of L and ξ and a chosen value of the parameter-
function ζ . Depending on the value of ζ , the differential function L̃ζ may either identically
vanish or be of order 0 or 1. This means that either the vector field Qζ is ultra-singular or
scoL Qζ = 0 or scoL Qζ = 1, respectively. We investigate each of the above cases separately.
Below we additionally suppose that the function L̃ζ is of maximal rank with respect to u (resp.
u1) if scoL Qζ = 0 (resp. scoL Qζ = 1).

The values of ζ for which Qζ for L is ultra-singular are singled out by the condition
L̃ζ = 0, where u and u1 are considered as independent variables. Splitting this condition
with respect to u1 gives a system S−1 of partial differential equations in ζ of orders less than
r, which may be incompatible in the general case. The incompatibility of this system means
that the set S contains no ultra-singular vector fields. For example, evolution equations of
orders greater than 1 and nonlinear wave equations of the form (5) with Fu �= 0, in contrast to
equations of the form (5) with Fu = 0, have no ultra-singular vector fields, see sections 5 and
6. ζ satisfying the ultra-singularity condition guarantees that Qζ ∈ Q(L) and the family of
Qζ -invariant solutions of L is parameterized by an arbitrary function of a single Qζ -invariant
variable.
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If scoL Qζ = 0, the parameter-function ζ satisfies the condition L̃
ζ
u1 = 0 with u and

u1 viewed as independent variables, which is weaker than the ultra-singularity condition.
Therefore, the corresponding system S0 of partial differential equations in ζ of orders less
than r, obtained by splitting the zero co-order singularity condition with respect to u1, has
more chances of being compatible than S−1. Thus, any nonlinear wave equation of the form
(5) with Fu �= 0 admits zeroth co-order singular vector fields although this is not the case
for ultra-singular vector fields. At the same time, evolution equations do not possess zeroth
co-order singular vector fields.

Certain conditions which are sufficient for the compatibility of S0 can be formulated.
Thus, if Ľω(1,0)

= 0 and ξu = 0 then the system S0 is compatible since it is satisfied by any ζ

with ζu = 0. In other words, scoL Qζ � 0 for any ζ = ζ(x). Let us consider this particular
case in more detail. (Recall that under the condition ξu = 0 the coefficient ξ can be assumed,
up to point transformations, to equal 0 but we will not use this possibility.)

If additionally Ľω(0,0)
= 0, the condition L̃ζ = 0 under the assumption ζ = ζ(x) implies

only a single partial differential equation with respect to ζ . Any of its solutions is a solution
of S−1 and hence the corresponding vector field Qζ is ultra-singular for L.

Otherwise scoL Qζ = 0 and we can resolve the equation L̃ζ = 0 with respect to u:
u = Gζ (x), where the expression for the function Gζ depends on the parameter-function
ζ = ζ(x) and its derivatives up to order r − 1. Then the conditional invariance criterion is
equivalent to the r th-order partial differential equation ζ = ξG

ζ

1 + G
ζ

2 with respect to ζ . If
ζ is a solution of this equation then Qζ is a reduction operator of L. The ansatz constructed
with the operator Qζ can be taken in the form u = ϕ(ω) + Gζ (x), where ϕ = ϕ(ω) is the new
unknown function and ω = ω(x) is the invariant independent variable satisfying the equation
ξω1 + ω2 = 0. It reduces the initial equation L to a trivial algebraic equation ϕ = 0, i.e., the
function u = Gζ (x) is a unique Qζ -invariant solution of L. Conversely, let us fix a solution
u = f (x) of the equation L and set ζ = ξf1 + f2. Then f = Gζ (x) and hence ζ = ξG

ζ

1 + G
ζ

2 ,
i.e., in view of the conditional invariance criterion Qζ = ξ∂1 + ∂2 + ζ∂u is a reduction operator
of L, and ζu = 0. The solution u = f (x) is invariant with respect to Qζ by construction.
Thus we obtain:

Theorem 6. Suppose that an equation L: L = 0 possesses a first co-order singular set
S = {Qζ } of vector fields in the reduced form Qζ = ξ∂1 + ∂2 + ζ∂u with ξu = 0, i.e., its
right-hand side L is represented in the form L = Ľ(x,�r,1), where

�r,1 = (
ωα = D

α1
1 (ξD1 + D2)

α2u, α1 � 1, α1 + α2 � r
)
,

Ľωα
�= 0 for some α with α1 = 1, and additionally Ľω(1,0)

= 0 and Ľω(0,0)
�= 0. Then there

exists a one-to-one correspondence between solutions of L and reduction operators from S
with ζu = 0. Namely, any such operator is of singularity co-order 0 and corresponds to the
unique solution which is invariant with respect to this operator. The problems of solving the
equation L and the exhaustive description of its reduction operators of the above form are
completely equivalent.

Now we consider the regular values of ζ for which the singularity co-order of Qζ coincides
with the singularity co-order of the whole family S (and equals 1). If scoL Qζ = 1, the
parameter-function ζ satisfies the regularity condition L̃

ζ
u1 �= 0. Therefore, the equation

L̃ζ = 0 which is equivalent to L on the manifold Qζ

(r) can be solved with respect to u1:
u1 = Gζ (x, u), where the expression for the function Gζ depends on the parameter-function
ζ and its derivatives up to order r − 1. Applied to the equation L and the operator Qζ , the
conditional invariance criterion implies only the equation

ζ1 + ζuG
ζ − (ξ1 + ξuG

ζ )Gζ = ξG
ζ

1 + G
ζ

2 + ζGζ
u (8)
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with respect to the function ζ . Therefore, in this case the system of determining equations
consists of the single equation (8) and, therefore, is not overdetermined. This equation can be
rewritten as the compatibility condition

ζ1 + ζuG
ζ − (ξ1 + ξuG

ζ )Gζ − ξ
(
G

ζ

1 + Gζ
uG

ζ
) = G

ζ

2 + (ζ − ξGζ )Gζ
u

of the equations u1 = Gζ and ξu1 + u2 = ζ with respect to u. The order of (8) equals r and
hence is greater than the order of the system S0. This guarantees (under certain conditions of
smoothness, e.g., in the analytical case) that equation (8) has solutions which are not solutions
of S0. In other words, the equation L necessarily possesses first co-order singular reduction
operators which belong to S.

The results of section 7 imply that for each first co-order singular reduction operator Q
of the equation L there exists a one-parametric family of Q-invariant solutions of L. If the
equation L admits a co-order one singular module of vector fields, the converse statement is
true as well.

Theorem 7. Suppose that an equation L: L = 0 possesses a co-order one singular set
S = {Qζ } of vector fields in the reduced form Qζ = ξ∂1+∂2+ζ∂u. Then for any one-parametric
family F of solutions of L there exists a value of the parameter-function ζ = ζ(x, u) such that
Qζ is a reduction operator of L and each solution from F is invariant with respect to Qζ .

Proof. Consider a one-parametric family F = {u = f (x, �)} of solutions of L. The derivative
f� is nonzero since the parameter � is essential. From u = f (x, �) we derive � = �(x, u)

with some function � = �(x, u), where �u �= 0, and then define ζ = ζ(x, u) by the formula

ζ = −ξ�1 + �2

�u

.

Since fi = −�i/�u|u=f , i = 1, 2, then ξf1 + f2 = ζ |u=f , i.e., any solution from F is
Qζ -invariant. Then either Qζ is an ultra-singular vector field for L or scoL Qζ = 1. (The case
scoL Qζ = 0 is impossible since otherwise the equation L could not have a one-parametric
family of Qζ -invariant solutions.) Any ultra-singular vector field for L is a reduction operator
of L. If scoL Qζ = 1 then Q is a reduction operator of L in view of corollary 12. �

Corollary 13. Suppose that an equation L possesses a first co-order singular set S = {Qζ }
of vector fields in the reduced form Qζ = ξ∂1 + ∂2 + ζ∂u, and that no element of S is ultra-
singular for L. Then up to the equivalence of solution families there exists a bijection between
one-parametric families of solutions of L and its first co-order singular reduction operators
belonging to S. Namely, each operator of this kind corresponds to the family of solutions
which are invariant under it. The problems of the construction of all one-parametric solution
families of the equation L and the exhaustive description of its reduction operators of the
above form are completely equivalent.

This bijection is broken in the presence of ultra-singular vector fields.
The above relation between one-parametric families of solutions and first co-order singular

reduction operators can be stated as a connection between the initial equation L and the
determining equation (8).

Corollary 14. Suppose that an equation L: L = 0 possesses a first co-order singular set
S = {Qζ } of vector fields in the reduced form Qζ = ξ∂1 + ∂2 + ζ∂u. Then the determining
equation for values of ζ corresponding to first co-order singular reduction operators of L is
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reduced by composition of the Bäcklund transformation ξ�1 +�2 +ζ�u = 0,�1 +Gζ �u = 0
where � is a function of (x, u), and the hodograph transformation

the new independent variables: x̃1 = x1, x̃2 = x2, � = �,

the new dependent variable: ũ = u

to the initial equation L for the function ũ = ũ(x̃, �) with � playing the role of a parameter.

Proof. We fix an arbitrary solution ζ of equation (8), which additionally satisfies the condition
L̃

ζ
u1 �= 0. In view of the Frobenius theorem, the equations ξ�1 + �2 + ζ�u = 0 and

�1 + Gζ�u = 0 are compatible with respect to the function � = �(x, u) since their
compatibility condition coincides with (8) and hence is identically satisfied. We choose a
nonconstant solution � of both these equations. Then �u �= 0 and

ζ = −ξ
�1

�u

+
�2

�u

, Gζ = −�1

�u

.

After the hodograph transformation, the latter equations take the form ξ ũx̃1 + ũx̃2 = ζ(x̃, ũ)

and ũx̃1 = Gζ (x̃, ũ). This directly implies that for any value of � the function ũ = ũ(x̃, �)

satisfies the equation L. The parameter � is essential in ũ since ũ� = 1/�u �= 0.
It follows from the proof of theorem 7 that the application of the inverse transformations

to a one-parametric family of solutions of the initial equation L results in a solution of
equation (8) if the defined value of ζ satisfies the regularity condition L̃

ζ
u1 �= 0. �
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